67 research outputs found

    Observation of Devil's Staircase in the Novel Spin Valve System SrCo6_6O11_{11}

    Get PDF
    Using resonant soft x-ray scattering as a function of both temperature and magnetic field, we reveal a large number of almost degenerate magnetic orders in SrCo6O11. The Ising-like spins in this frustrated material in fact exhibit a so-called magnetic devil's staircase. It is demonstrated how a magnetic field induces transitions between different microscopic spin configurations, which is responsible for the magnetoresistance of SrCo6O11. This material therefore constitutes a unique combination of a magnetic devil's staircase and spin valve effects, yielding a novel type of magnetoresistance system.Comment: 5 pages, 5 figure

    Plasticity and Adaptation in Neuromorphic Biohybrid Systems

    Get PDF
    Neuromorphic systems take inspiration from the principles of biological information processing to form hardware platforms that enable the large-scale implementation of neural networks. The recent years have seen both advances in the theoretical aspects of spiking neural networks for their use in classification and control tasks and a progress in electrophysiological methods that is pushing the frontiers of intelligent neural interfacing and signal processing technologies. At the forefront of these new technologies, artificial and biological neural networks are tightly coupled, offering a novel \u201cbiohybrid\u201d experimental framework for engineers and neurophysiologists. Indeed, biohybrid systems can constitute a new class of neuroprostheses opening important perspectives in the treatment of neurological disorders. Moreover, the use of biologically plausible learning rules allows forming an overall fault-tolerant system of co-developing subsystems. To identify opportunities and challenges in neuromorphic biohybrid systems, we discuss the field from the perspectives of neurobiology, computational neuroscience, and neuromorphic engineering. \ua9 2020 The Author(s

    Magnetic frustration, phase competition and the magneto-electric effect in NdFe3(BO3)4

    Full text link
    We present an element selective resonant magnetic x-ray scattering study of NdFe3(BO3)4 as a function of temperature and applied magnetic field. Our measurements show that the magnetic order of the Nd sublattice is induced by the Fe spin order. When a magnetic field is applied parallel to the hexagonal basal plane, the helicoidal spin order is suppressed and a collinear ordering, where the moments are forced to align in a direction perpendicular to the applied magnetic field, is stabilized. This result excludes a non-collinear spin order as the origin of the magnetically induced electric polarization in this compound. Instead our data imply that magnetic frustration results in a phase competition, which is the origin of the magneto-electric response.Comment: 5 pages, 3 figure

    Fluid release from the subducted Cocos plate and partial melting of the crust deduced from magnetotelluric studies in southern Mexico: implications for the generation of volcanism and subduction dynamics

    Get PDF
    In order to study electrical conductivity phenomena that are associated with subduction related fluid release and melt production, magnetotelluric (MT) measurements were carried out in southern Mexico along two coast to coast profiles. The conductivity-depth distribution was obtained by simultaneous two-dimensional inversion of the transverse magnetic and transverse electric modes of the magnetotelluric transfer functions. The MT models demonstrate that the plate southern profile shows enhanced conductivity in the deep crust. The northern profile is dominated by an elongated conductive zone extending >250 km below the Trans-Mexican Volcanic Belt (TMVB). The isolated conductivity anomalies in the southern profile are interpreted as slab fluids stored in the overlying deep continental crust. These fluids were released by progressive metamorphic dehydration of the basaltic oceanic crust. The conductivity anomalies may be related to the main dehydration reactions at the zeolite → blueschist → eclogite facies transitions and the breakdown of chlorite. This relation allows the estimation of a geothermal gradient of ∌8.5°C/km for the top of the subducting plate. The same dehydration reactions may be recognized along the northern profile at the same position relative to the depth of the plate, but more inland due to a shallower dip, and merge near the volcanic front due to steep downbending of the plate. When the oceanic crust reaches a depth of 80–90 km, ascending fluids produce basaltic melts in the intervening hot subcontinental mantle wedge that give rise to the volcanic belt. Water-rich basalts may intrude into the lower continental crust leading to partial melting. The elongated highly conductive zone below the TMVB may therefore be caused by partial melts and fluids of various origins, ongoing migmatization, ascending basaltic and granitic melts, growing plutons as well as residual metamorphic fluids. Zones of extremely high conductance (>8000 S) in the continental crust on either MT profile might indicate extinct magmatism

    Electrical conductivity during incipient melting in the oceanic low-velocity zone

    Get PDF
    International audienceThe low-viscosity layer in the upper mantle, the asthenosphere, is a requirement for plate tectonics1. The seismic low velocities and the high electrical conductivities of the asthenosphere are attributed either to subsolidus, water-related defects in olivine minerals2, 3, 4 or to a few volume per cent of partial melt5, 6, 7, 8, but these two interpretations have two shortcomings. First, the amount of water stored in olivine is not expected to be higher than 50 parts per million owing to partitioning with other mantle phases9 (including pargasite amphibole at moderate temperatures10) and partial melting at high temperatures9. Second, elevated melt volume fractions are impeded by the temperatures prevailing in the asthenosphere, which are too low, and by the melt mobility, which is high and can lead to gravitational segregation11, 12. Here we determine the electrical conductivity of carbon-dioxide-rich and water-rich melts, typically produced at the onset of mantle melting. Electrical conductivity increases modestly with moderate amounts of water and carbon dioxide, but it increases drastically once the carbon dioxide content exceeds six weight per cent in the melt. Incipient melts, long-expected to prevail in the asthenosphere10, 13, 14, 15, can therefore produce high electrical conductivities there. Taking into account variable degrees of depletion of the mantle in water and carbon dioxide, and their effect on the petrology of incipient melting, we calculated conductivity profiles across the asthenosphere for various tectonic plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (more than five million years old), incipient melts probably trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas in young plates4, where seamount volcanism occurs6, a higher degree of melting is expected

    Efficient Physical Embedding of Topologically Complex Information Processing Networks in Brains and Computer Circuits

    Get PDF
    Nervous systems are information processing networks that evolved by natural selection, whereas very large scale integrated (VLSI) computer circuits have evolved by commercially driven technology development. Here we follow historic intuition that all physical information processing systems will share key organizational properties, such as modularity, that generally confer adaptivity of function. It has long been observed that modular VLSI circuits demonstrate an isometric scaling relationship between the number of processing elements and the number of connections, known as Rent's rule, which is related to the dimensionality of the circuit's interconnect topology and its logical capacity. We show that human brain structural networks, and the nervous system of the nematode C. elegans, also obey Rent's rule, and exhibit some degree of hierarchical modularity. We further show that the estimated Rent exponent of human brain networks, derived from MRI data, can explain the allometric scaling relations between gray and white matter volumes across a wide range of mammalian species, again suggesting that these principles of nervous system design are highly conserved. For each of these fractal modular networks, the dimensionality of the interconnect topology was greater than the 2 or 3 Euclidean dimensions of the space in which it was embedded. This relatively high complexity entailed extra cost in physical wiring: although all networks were economically or cost-efficiently wired they did not strictly minimize wiring costs. Artificial and biological information processing systems both may evolve to optimize a trade-off between physical cost and topological complexity, resulting in the emergence of homologous principles of economical, fractal and modular design across many different kinds of nervous and computational networks

    Practicing stewardship: EU biofuels policy and certification in the UK and Guatemala

    Get PDF
    Biofuels have transitioned from a technology expected to deliver numerous benefits to a highly contested socio-technical solution. Initial hopes about their potential to mitigate climate change and to deliver energy security benefits and rural development, particularly in the Global South, have unravelled in the face of numerous controversies. In recognition of the negative externalities associated with biofuels, the European Union developed sustainability criteria which are enforced by certification schemes. This paper draws on the literature on stewardship to analyse the outcomes of these schemes in two countries: the UK and Guatemala. It explores two key issues: first, how has European Union biofuels policy shaped biofuel industries in the UK and Guatemala? And second, what are the implications for sustainable land stewardship? By drawing attention to the outcomes of European demand for biofuels, we raise questions about the ability of European policy to drive sustainable land practices in these two cases. The paper concludes that, rather than promoting stewardship, the current governance framework effectively rubberstamps existing agricultural systems and serves to further embed existing inequalities

    Penetration of crustal melt beyond the Kunlun Fault into northern Tibet

    Get PDF
    The weak lithosphere of the Tibetan plateau is surrounded by rigid crustal blocks1 and the transition between these regimes plays a key role in the ongoing collision between India and Eurasia. Geophysical data2,3,4,5 and magmatic evidence6,7 support the notion that partial melt exists within the anomalously hot7,8 crust of northern Tibet. The Kunlun Fault, which accommodates the plateau’s eastward extrusion, has been identified as a significant rheological boundary4 between weak, warm Tibetan crust8 and the rigid eastern Kunlun–Qaidam block. Here we present reanalyses and remodelling of existing magnetotelluric data4, using an anisotropy code9 to obtain revised resistivity models. We find unequivocal evidence for anisotropy in conductivity at the northern edge of the Tibetan plateau. We interpret this anisotropy as the signature of intrusion of melt that penetrates north from the Tibetan plateau and weakens the crust beneath the Kunlun Shan. We suggest that our identification of a melt intrusion at the northern edge of the Tibetan plateau compromises the previous identification of the Kunlun Fault as an important rheological boundary. We conclude that the crustal melt penetration probably characterizes the growth of the plateau10 to the north, as well as accommodating the north–south crustal shortening in Tibet
    • 

    corecore